ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

Unit 4 — Number Systems and Computer Arithmetic

UNSIGNED INTEGER NUMBERS

DECIMAL NUMBER SYSTEM DIGIT
|
] A_d_ecimal_d_igit can take Yalues from .O'to 9 ‘0 12345678 9\
= Digit-by-digit representation of a positive integer number (powers of 10):
Number: 9372 hundreds = > tens
thousands (—I | > units
9 13|72
9 thousands, 3 hundreds, 7 tens, and 2 units
\ T J L T J [} T J _V_l
103 102 10? 100
9372 = 9x10° + 3x10%2 + 7x10! + 2%100

POSITIONAL NUMBER REPRESENTATION
= Let's consider the numbers from 0 to 999. We represent these numbers with 3 digits (each digit being a number between 0
and 9). We show a 3-digit number using the positional nhumber representation:

MATHEMATICAL REPRESENTATION EXAMPLE
3-digit
l_ d, d, d, —1 l_ 2 0 9 _l
\} \/
Third Digit Second Digit First Digit Third Digit Second Digit First Digit

= The positional number representation allows us to express the decimal value using powers of ten: d, x 102 + d; x 10! +
dy X 10° . Example:

Decimal 3-digit representation Powers of 10:

Number dad;dy d,x10%2 + d;x10® + d,x10°

0 000 0x10%2 + 0x10! + 0x10°

9 009 0x102 + 0x10! + 9x10°

11 011 0x102 + 1x10' + 1x10°

25 025 0x102 + 2x10! + 5x10°

90 090 0x102 + 9x10! + 0x10°

128 128 1x102 + 2x10! + 8x10°

255 255 2x102 + 5x10' + 5x10°

Exercise: Write down the 3-digit and the powers of ten representations for the following numbers:

Decimal Number | 3-digit representation | d, x 10% +d; X 10* + d, x 10°
5

254

100

99

1 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

General Case:
= Positional number representation for an integer positive number with n digits: d,,_,d,_5 ...d;d,
Decimal Value:
i=n—-1
D= Z d; x 100 =d,_; X 10" +d,_, x 10"2 4 .. + d; x 10 + dyy x 10°

i=0

» Example: 1098324 (7 digits). 1098324 = 1x108 +0x10° +9x10% +8x10% +3x102 + 2x 101 + 4 x 10°
203476 (6 digits). 203476 = 2x10° +0x10% +3x10% + 4x10% +7 x 101 + 6 x10°
Maximum value:

= The table presents the maximum attainable value for a given number of digits. What pattern do you find? Can you complete
it for the highlighted cases (4 and 6)?

Number of digits Maximum value Range
1 9 = 10110 - 9 =0 —> 101-1
2 99 = 102-1 | 0 — 99 =0 > 10%-1
3 999 = 103-1 | 0 — 999 =0 > 103-1
99999 = 105-1 | 0 — 99999 =0 —> 10°-1
n 999..999 = 10n-1 | 0 — 999..999 = 0 —» 10~-1

= Maximum value for a number with ‘n’ digits: Based on the table, the maximum decimal value for a number with ‘n’
digits is given by:

D = 999...999 = 9x10™t + 9x10™2 4+ ... + 9x10! 4+ 9x10% = 10"-1
%—I
n digits
= With 'n’ digits, we can represent 10~ positive integer numbers from 0 to 10--1.

& With 7 digits, what is the range (starting from 0) of positive numbers that we can represent? How many different numbers
can we represent?

BINARY NUMBER SYSTEM
= We are used to the decimal number system. However, there exist other number DIGIT BIT
systems: octal, hexadecimal, vigesimal, binary, etc. In particular, binary 1 | \

numbers are very practical as they are used by digital computers. For binary
numbers, the counterpart of the decimal digit (that can take values from 0 to 9)
is the binary digit, or bit (that can take the value of 0 or 1).

0123456789 0 1

= Bit: Unit of information that a computer uses to process and retrieve data. It can also be used as a Boolean variable (see
Unit 1).

= Binary number: This is represented by a string of bits using the positional number representation: b,,_1b,,_5 ... b1 by
= Converting a binary number into a decimal number: The following figure depicts two cases: 2-bit numbers and 3-bit

numbers. Note that the positional representation with powers of two let us obtain the decimal value (integer positive) of the
binary number.

2 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design Fall 2024
Binary number Powers of 2: Decimal
MATHEMATICAL REPRESENTATION blbo b1X21 + b0><20 Number
2-bit 00 0x21 + 0x20 0
X + X
b1 b0 1 0
01 0x2! + 1x2 1
10 1x21 + 0x20 2
Second Bit First Bit 11 1x2! + 1x2° 3
Binary number Powers of 2 Decimal
b,b,b, b,x2% + b;x2! + byx2° Number
MATHEMATI REPRESENTATION 000 0x2% + 0x2° + 0x2° 0
R ° 001 0x22 + 0x2! + 1x29 1
b b b 010 0x22 + 1x21 + 0x20 2
2 1 0 011 0x22 4+ 1x21 + 1x20 3
) 100 1x22 + 0x2! + 0x2° 4
Third Bit Second Bit First Bit 101 1x22 + 0x21 + 1x2° 5
110 1x22 4+ 1x21 + 0x20 6
111 1x22 + 1x2! 4+ 1x20 7

General case:
= Positional number representation for a binary number with *‘n’ bits:

bn_lbn_z o o o blbo

Most significant (_I I_) Least significant

(leftmost) bit (rightmost) bit
The binary humber can be converted to a positive decimal nhumber by using the following formula:
i=n-1
D= Z b x2t=by x2" 1 4 by_p, X 2" 2 4 o by X 21 + by x 20

i=0
= To avoid confusion, we usually write a binary number and attach a suffix ‘2": (b,_1b,_5 ... b1bg)-

= Example: 6 bits: (101011), =D =1Xx2°+0x2*+1x23+0x22+1x 21 +1x2°=43
4 bits: (1011), =D =1x23+0x22+1x21+1x20=11

» Maximum value for a given number of bits. Complete the tables for the highlighted cases (4 and 6):

Number of bits Maximum value Range
1 1, =21-1 10 — 1, =0 > 21-1
2 11, = 22-1 | 0 - 11, =0 > 22-1
3 111, = 23-1 | 0 —» 111, =0 > 23-1

11111, = 25-1 | 0 —» 11111, =0 > 2°-1

n 111..111, = 2»-1 | 0 — 111.111, = 0 — 2°-1

= Maximum value for 'n’ bits: The maximum binary number is given by an n-bit string of 1's: 111...111. Then, the maximum
decimal number is given by:

D = 111...111 = 1x21 4+ 1x2n2 4+ . 4+ 1x21 + 1x20 = 2n-1
\—‘—J
n bits

= With 'n’ bits, we can represent 2~ positive integer numbers, from 0 to 2™ — 1.

3 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design

Fall 2024

= The case n=8 bits is of particular interest, as a string of 8 bits is called a byte. For 8-bit numbers, we have 256 numbers in

the range 0 to 28-1 = 0 to 255.

babgbsb,bsbybiby
Most significant (_I I_) Least significant
(leftmost) bit (rightmost) bit
= The table shows some examples:
: 8-bit format
%eufnlbzarl b,bb.b,bb,d,d, | P7%27 + bgx2° + byx2° + bx2% + byx23 + b,x2% + b;x21 + bx2°
0 00000000 0x27 + 0x26 + 0x25 + 0x2%4 + 0x23 + 0x22 + O0x2! 4+ 0x2°
9 00001001 0x27 + 0x2¢ + 0x25 + O0x2% + 1x23 + 0x22 + O0x2! + 1x2°
11 00001011 0x27 + 0x26 + 0x25 + O0x2¢ + 1x23 + 0x22 + 1x2! + 1x2°
25 00011001 0x27 + 0x26 4+ 0x25 + 1x2%4 + 1x23 + 0x22 + O0x2! 4+ 1x20
920 01011010 0x27 + 1x26 4+ 0x25 + 1x2%4 + 1x23 + 0x22 + 1x2! 4+ 0x2°
128 10000000 1x27 + 0x26 + 0x25 + 0x2% + 0x23 + 0x22 + 0x2! + 0x2°
255 11111111 1x27 + 1x26 + 1x25 4+ 1x2% 4+ 1x23 4+ 1x22 + 1x2! + 1x20
Exercise: Convert the following binary numbers (positive integers) to their decimal values:
8-bit representation by X 27 + bg X 26 + bg X 25 + by X 2% + by X 23 + by X 2% + by X 21 + by x 2° Rﬁﬁ;’;‘:r'
00000001
00001001
10000101
10000111
11110011
CONVERSION OF A NUMBER IN ANY BASE TO THE DECIMAL SYSTEM
= To convert a number of base 'r' (r = 2, 3,4 ,...) to decimal, we use the following formula:
Number in base 'r': (r_17h_2 .. T170)~
Conversion to decimal:
i=n-1
D= 2 T e T e S O A I T i S o
i=0
Also, the maximum decimal value for a number in base 'r' with 'n' digits is:
D=rrr..rrr=rXr" 14 ,Xxr" 2+ +rxrit+rxr®=r"—1
= Example: Base-8:
Number of digits Maximum value Range
1 Tg = 81-1 0 > 7g =0 —» 8-1
2 77 = 82-1 | 0 - 774 =0 — 82-1
3 777 = 83-1 | 0 —» 7774 =0 > 8-1
n 777.777¢ = 8°-1 | 0 = 777..777g = 0 — 8-1

Examples:
»= (50632)g: Number in base 8 (octal system)

Number of digits: n =5

Conversion to decimal: D =5x 8*+0x 8% + 6 x 82+ 3 x 81 + 2 x 8° = 20890
= (3102),: Number in base 4 (quaternary system)

Number of digits: n = 4

Conversion to decimal: D =3 x 43 +1x42 + 0 x 41 + 2 x 4% =210

4 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design

Fall 2024

CONVERSION OF DECIMAL (INTEGER POSITIVE) TO BINARY NUMBERS

= Examples:

Number in Number in

base 10 base 2
52 —> 2227,
Remainder
26 A =
0
2
2 0
2 1
110100,
0
2
2 1
1
2 _

stop here!

Number in

Number in

base 10 base 2
123 — 2222,
Remainder
6l A =
1
1
0

stop here!

1 1111011,

= Note that some numbers require fewer bits than others. If we want to use a specific bit representation, e.g., 8-bit, we just
need to append zeros to the left until the 8 bits are completed. For example:

110100, = 00110100, (8-bit number)
1111011, = 01111011, (8-bit number)

= Actually, you can use this method to convert a decimal
number into any other base. For example, if you want to
convert it into a base-8 number, just divide by 8 and group
the remainders.

= Example: Converting a decimal number to base-8:

Number in

Number in

base 10 base 8
83 — 227272,
Remainder
10 A —
3
8)83
! 2 123
- 8
8)10
0 1
8 _

stop here!

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design

Fall 2024

Exercise:

= Convert the following two decimal numbers to binary numbers. Fill in the blanks in the figure below.

Number in
base 10

63 —

]

A

63

EnENEnENE

Number in

Remainder

—_

base 2

27?727

2

Number in
base 10

Number in
base 2

97 I:> 2227,

]

N
©
~

N
T

NN

NOoOodn

N

Remainder

—_

A

= Now, convert the following decimal numbers to binary numbers. The final binary number must have 8 bits (append zeros to

the left to complete).

Decimal number

Binary number with 8 bits
b7b6b5b4b3b2blb0

40

255

111

126

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

HEXADECIMAL NUMBER SYSTEM

= This is a very useful system as it is a short-hand notation for binary numbers

= In the decimal number system, a digit can take a value from 0 to 9.

= A hexadecimal digit is also called a nibble. A hexadecimal digit can take a value from 0 to 15. To avoid confusion, the
numbers 10 to 15 are represented by letter (A-F):

Hexadecimal digits
A

<« o 7]
Ry
N €« N
w <«—Ww
INEEENFS
U <«
o «— o

7
v
.

0 «— ©
O «—©

v
0

v
1

N «—Q
w <«<— oY
S <—
o «—H

10 11 1

o

Y
Decimal digits

= The following figure shows a 2-digit hexadecimal number. Note that the positional representation with powers of 16 let us
obtain the decimal value (integer positive) of the hexadecimal number. This is the same as converting a hexadecimal
number into a decimal number.

Hex. number Powers of 16: Decimal

MATHEMATICAL REPRESENTATION h;h, h;x16 + hyx16° Value
2-hexadecimal digits 52 5x16! + Ax16° 90
h, h, 10 1x16! + 0x16° 16
08 0x16! + 8x16° 8
FB Fx16! + Bx16° 251
Second Digit First Digit 3E 3x16! + Ex16° 62
A7 Ax16 + 7x16° 167

= Note that when we use the letters A-F in the multiplications inside the powers of 16 representation (e.g., Ax16! +7x169),
we need to replace the hexadecimal symbol by its decimal value.
A =10, B=11, ¢ =12, D= 13, E = 14, F = 15

For example: Ax16! = (10)x16%.

EXERCISE: Convert the following hexadecimal numbers (positive integers) to their decimal values:

2-hex. digit

. hix16! +hox16° Decimal Number
representation

AB

CE

05

70

FO

E9

General case:
= Positional number representation for a hexadecimal number with ‘n’ nibbles (hexadecimal digits):

h,;h,, ... hijhg

Most significant (_, I_) Least significant

(leftmost) nibble (rightmost) nibble

7 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

= To convert a hexadecimal number into a decimal, we apply the following formula:
Decimal Value (integer positive):

i=n-1
D= Z hi X 16" = hy_q X 16" 1 4 hy_) X 162 4 -+ hy X 16! + hy X 160
i=0
= To avoid confusion, it is sometimes customary to append the prefix ‘0x’ to a hexadecimal nhumber:
Oxhn—lhn—Z .« e hlhO
= Examples: FDOA90: OXFDOA90 = Fx16° + Dx16* + 0x16° + Ax162 + 9x16! + 0x16°
0B871C: 0x0B871C 0x165 + Bx164 + 8x163 + 7x162 + 1x16! + Cx16°

= The table presents the maximum attainable value for the given number of nibbles (hexadecimal digits). What pattern do you
find? Can you complete it for the highlighted cases (4 and 6)?

Number of nibbles Maximum value Range
1 F=16-1]0 > F = 0 —> 1le6'-1
2 FF = 162-1 | 0 > FF = 0 —> 162-1
3 FFF = 163-1 | 0 - FFF = 0 — 163-1

FFFFF

16°-1 | 0 > FFFFEF = 0 —> 1l6°-1

n FFF..FFF

16"-1 | 0 - FFF.FFF = 0 — 1le6°-1

*= Maximum value for ‘n’ nibbles: The maximum decimal value with *n’ nibbles is given by:

D = FFF...FFF = Fx16™1 + Fx16™2 + ... + Fx16! + Fx16°

— 15x16™t 4+ 15x16™2 + ... 4+ 15x16! + 15x16° = 167-1
n nibbles

= With 'n’ nibbles, we can represent positive integer numbers from 0 to 162-1. (16~ numbers)

UNITS OF INFORMATION
Nibble Byte KB MB GB TB
4 bits 8 bits 210 bytes 220 pytes 230 bytes 240 bytes

= Note that the nibble (4 bits) is one hexadecimal digit. Also, one byte (8 bits) is represented by two hexadecimal digits.

= While KB, MB, GB, TB (and so on) should be powers of 10 in the International System, it is customary in digital jargon to
use powers of 2 to represent them as a matter of convenience. In microprocessor systems, memory size is determined by
the number of addresses its address bus can handle (which is a power of 2). For example, for a memory with a 15-bit
address line and 8 bits (1 byte) for each memory position, the memory size is 21> bytes = 25210 bytes = 32 KB.

= To avoid conflicting definitions, it has been suggested to use 1KiB (kibibyte) for 219 bytes, 1 MiB (mebibyte) for 220 bytes,
1GiB (gibibyte) for 23° bytes, 1 TiB for 20 bytes, and so on. However, this has not been fully adopted yet.

= Digital computers usually represent numbers utilizing a number of bits that is a multiple of 8. The simple hexadecimal to
binary conversion allows us to quickly convert a string of bits that is a multiple of 8 into a string of hexadecimals digits.

= The size of the data bus in a processor represents the computing capacity of a processor, as the data bus size is the number
of bits the processor can operate in one operation (e.g.: 8-bit, 16-bit, 32-bit processor). This is also usually expressed as a
number of bits that is a multiple of 8.

RELATIONSHIP BETWEEN HEXADECIMAL AND BINARY NUMBERS

= Conversions between hexadecimal and binary systems are very common when dealing with digital computers. In this activity,
we will learn how these 2 systems are related and how easy it is to convert between one and the other.

= Hexadecimal to binary: We already know how to convert a hexadecimal number into a decimal number. We can then can
convert the decimal number into a binary number (using successive divisions).

= Binary to hexadecimal: We can first convert the binary number to a decimal number. Then, using an algorithm similar to
the one that converts decimals into binary, we can convert our decimal number into a hexadecimal number.

8 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

SIMPLE METHOD TO CONVERT HEXADECIMAL TO BINARY NUMBERS AND VICEVERSA

= The previous two conversion processes are too tedious. Fortunately, hexadecimal numbers have an interesting property
that allows quick conversion of binary numbers to hexadecimals and viceversa.

= Binary to hexadecimal: We group the binary numbers in groups of 4 (starting from the rightmost bit). If the last group
of bits does not have four bits, we append zeros to the left. Then, we independently convert each group of 4 bits to its
decimal value.
Notice that 4 bits can only take decimal values between 0 and 2%-1 = 0 to 15, hence 4 bits represent only one hexadecimal
digit. In other words, for each group of 4 bits, there are only 16 possible hexadecimal digits to pick from. The figure below
shows an example.

binary dec hex

Binary: 1011101, = E&;E‘O_l; 000 0 5
decimal: 5 13 0001 1 1

0010 2 2

l l 0011 3 3

hexadecimal: 5 D 0100 4 4

0101 5 5

0110 [6

0111 7 7

Then: 010111012 = =5 1000 3 8
1001 9 9

1010 10 A

Verification: 1011 11 B
01011101, = 1x26 4 3 2 0 = L1012 c
o = 1x2° + 1x2% + 1x2° + 1x2% + 1x2Y% = 93 1101 13 D

0x5D = 5x16! + Dx16° = 93 1110 14 E
1111 15 F

= Exercise: Group the following binary numbers in groups of 4 bits and obtain the hexadecimal representation. Use the table
in the previous figure to pick the correspondent hexadecimal digit for each group of 4 bits.

Binary number Hexadecimal number

1101111

101

1110

1100011

11111110

100001

= Hexadecimal to binary: It is basically the inverse of the process of converting a binary into a hexadecimal nhumbers. We
pick each hexadecimal digit and convert it (always using 4 bits) to its 4-bit binary representation. The binary number is the
concatenation of all resulting group of 4 bits.

FA Cl
¥ N\ ¥ ™\
——= ——= —
1111 1010 1100 0001
—
OxFA = 11111010, DO NOT discard these zeros
0xCl = 11000001, when concatening!

9 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

Exercise:
= Convert these hexadecimal numbers to binary. Verify it by converting both the binary and hexadecimal number (they should
match).

Hexadecimal

Binary number Decimal value
number

Al0

891

43

A2

FACE

= The reason hexadecimal numbers are popular is because hexadecimal numbers provide a short-hand notation for binary
numbers.

OcCTAL NUMBERS

= An octal digit can take between 0 and 7. This is another common number system in computers is base-8 (octal). The
conversion between base-8 and base-2 resembles that of converting between base-16 and base-2. Here, we group binary
numbers in 3-bit groups:

BINARY TO OCTAL

binary dec oct
Binary: 1011101, ‘p(l)l, 011 ‘lC')l,

—— 000 0 0
l l l 001 1 1
octal: 010 2 2
1 3 5 011 3 3
100 4 4
101 5 5
. 110 6 6
Thenyy OUONLLOM, = U315, 111 7 7
Verification:
01011101, = 1x2% + 1x24 + 1x23 + 1x22 4+ 1x20 = 93
135 = 1x8%2 + 3x8! + 5x8% = 93
OCTAL TO BINARY
754 31,
¥ N\ ¥ N\
= — =
111 101 011 001
l_'_l
75 = 111101, DO NOT discard these zeros
3lg = 011001, when concatening!

10 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

APPLICATIONS OF BINARY AND HEXADECIMAL REPRESENTATIONS

INTERNET PROTOCOL ADDRESS (IP ADDRESS):

= Hexadecimal numbers represent a compact way of representing binary numbers. The IP address is defined as a 32-bit
number, but it is displayed as a concatenation of four decimal values separated by a dot (e.g., 129.26.53.76).

= The following figure shows how a 32-bit IP address expressed as a binary number is transformed into the standard IP
address notation.

IP address (binary): 10000001000110100011010101001100
1000 0001 0001 1010 0011 0101 0100 1100

Conversion to)
hexadecimal: 8 1 1 A 3 5 4 c } Grab pairs of

L J L] L J L] hexadecimal numbers
Y Y Y Y
and convert each of
129 26 53 76 them to decimal.

IP address (hex): 0x811A354C
IP address notation: 129.26.53.76

= The 32-bit IP address expressed as binary number is very difficult to read. So, we first convert the 32-bit binary number to
a hexadecimal number.

= The IP address expressed as a hexadecimal (0x811A354C) is a compact representation of a 32-bit IP address. This should
suffice. However, it was decided to represent the IP address in a ‘human-readable’ notation. In this notation, we grab pairs
of hexadecimal numbers and convert each of them individually to decimal numbers. Then we concatenate all the values and
separate them by a dot.

= Important: Note that the IP address notation (decimal numbers) is NOT the decimal value of the binary number. It is
rather a series of four decimal values, where each decimal value is obtained by independently converting each two
hexadecimal digits to its decimal value.

v" Given that each decimal nhumber in the IP address can be represented by 2 hexadecimal digits (or 8 bits), what is the
range (min. value, max. value) of each decimal number in the IP address?
With 8 bits, we can represent 28 = 256 numbers from 0 to 255.

v" An IP address represents a unique device connected to the Internet. Given that the IP address has 32 bits (or 8
hexadecimal digits), the how many numbers can be represented (i.e., how many devices can connect to the Internet)?
232 = 4294967296 devices.

v" The number of devices that can be connected to the Internet is huge, but considering the number of Internet-capable
devices that exists in the entire world, it is becoming clear that 32 bits is not going to be enough. That is why the Internet
Protocol is being currently extended to a new version (IPv6) that uses 128 bits for the addresses. With 128 bits, how
many Internet-capable devices can be connected to the Internet?

2128 ~ 3.4 x 1038 devices

REPRESENTING GRAYSCALE PIXELS
A grayscale pixel is commonly represented with 8 bits. So, a grayscale pixel value varies between 0 and 255, 0 being the darkest
(black) and 255 being the brightest (white). Any value in between represents a shade of gray.

0 255

MEMORY ADDRESSES 8 bi
The address bus size in processors is usually determined by the Address %
number of memory positions it can address. For example, if we have

a microprocessor with an address bus of 16 bits, we can handle up 8888 8888 8888 8882: gzgggg
to 26 addresses. If the memory content is one byte wide, then the)
processor can handle up to 2'bytes = 64KB. T 1

Here, we use 16 bits per address, or 4 nibbles. The lowest address 17717 1111 1111 1111: OxFFFF
(in hex) is 0x0000 and highest address (in hex) is OxFFFF.

11 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

Examples:
= A microprocessor can only handle memory addresses from 0x0000 to 0x7FFF. What is the address bus size? If each
memory position is one byte wide, what is the maximum size (in bytes) of the memory that we can connect?

Address $

000 0000 0000 0000: 0x0000
The range from 0x0000 to 0x7FFF is akin to all possible cases 000 0000 0000 0001: 0x0001
with 15 bits. Thus, the address bus size is 15 bits. s 1

We want to cover all the cases from 0x0000 to 0x7FFF:

We can handle 2'5bytes = 32KB of memory.

111 1111 1111 1111: Ox7FFF

= A microprocessor can only handle memory addresses from 0x0000 to 0x3FFF. What is the address bus size? If each

memory position is one byte wide, what is the maximum size (in bytes) of the memory that we can connect?

Address &

0000 0000 0000 0000: 0x0000

The range from 0x0000 to Ox3FFF is akin to all possible cases 0000 0000 0000 0001: 0x0001
with 14 bits. Thus, the address bus size is 14 bits. cee 1

We want to cover all the cases from 0x0000 to 0x3FFF:

We can handle 21*bytes = 16KB of memory.

0011 1111 1111 1111: Ox3FFF

= A microprocessor has a 24-bit address line. We connect a memory chip to the microprocessor. The memory chip addresses
are assigned the range 0x800000 to 0xBFFFFF. What is the minimum number of bits required to represent addresses in
that individual memory chip? If each memory position is one byte wide, what is the memory size (in bytes)?

8 bits

By looking at the binary numbers from Address «<———— >
0x80000 to 0xBFFFFF, we notice that the [1000 0000 0000 0000 0000 0000: 0x800000
addresses in that range require 24 bits. But all 1000 0000 0000 0000 0000 0001: 0x800001
those addresses share the same first two MSBs: . e
10. Thus, if we were to use only that memory . 1

chip, we do not need those 2 bits, and we only .
need 22 bits. 1011 1111 1111 1111 1111 1111: OxXBFFFFF

We can handle 222bytes = 4MB of memory.

= A memory has a size of 512KB, where each memory content is 8-bits wide. How many bits do we need to address the
contents of this memory?

Recall that: 512KB = 2°bytes. So, we need 19 bits to address the contents of this memory (address bus size = 19 bits)
In general, for a memory with N address positions, the number of bits to address those positions is given by: [log, N

= A 20-bit address line in a microprocessor with an 8-bit Address __ 8bits
data bus handles 1 MB (220 bytes) of data. We want to 1
connect four 256 KB memory chips to the 8888 8888 8888 8888 8882f gxggggg
microprocessor. Provide the address ranges that each e 256KB

memory device will occupy. 0011 1111 1111 1111 1111: Ox3FFFF

Each memory chip can handle 256KB of memory. 0100 0000 0000 0000 0000: 0x40000 |2
256KB = 28pytes, requiring 18 bits for its address. 0100 0000 0000 0000 0001: 0x40001 05 6KB
For a 20-bit address: we have 5 hexadecimal digits that ~ 0111 1111 1111 1111 1111: Ox7FFFF
go from 0x00000 to 0xFFFFF (22° memory positions). 1000 0000 0000 0000 0000: 0x80000 |3
1000 0000 0000 0000 0001: 0x80001
We divide the 22° memory positions into 4 contiguous L L 256KB
groups, each with 2'® memory positions. The figure 1011 1111 1111 1111 1111: OXBFFFF
shows the optimal way of doing so: for each group, the
18 LSBs of the memory addresses correspond to the 1100 0000 0000 0000 0000: 0xC0000 |4
memory range of a 256 KB memory. And the 2 MSBs of 1100 0000 0000 0000 0001: 0xC0001 256KB
the memory addresses are the same within a group. For
a given memory address, we can quickly determine
which group it belongs to by looking at its 2 MSBs.

1111 1111 1111 1111 1111: OXFFFFF

12 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design

UNSIGNED NUMBERS - ADDITION

In the example, we add two 8-bit numbers using binary
representation and hexadecimal representation (this is a
short-hand notation). Note that every summation of two
digits (binary or hexadecimal) generates a carry when the
summation requires more than one digit. Also, note that ¢y
is the carry in of the summation. ¢y is usually zero.

The last carry (cs when n=8) is the carry out of the
summation. If it is zero, it means that the summation can be
represented with 8 bits. If it is one, it means that the
summation requires more than 8 bits (in fact 9 bits); this is
called an overflow. In the example, we add two numbers
and overflow occurs: an extra bit (in red) is required to
correctly represent the summation.

DIGITAL CIRCUIT IMPLEMENTATION

1-bit Addition:

Fall 2024
OO0 4 d+d =+ OO o 0O
1] m n m - un n m m n n
SESETIT IS ITE S oS
0x3F = 00111111+ s 3 F +
0xB2 =1 0110010 — B 2
O0xF1 =11110001 F 1
T A A = A A O O - - O
1] nm nu m - un n 1] 1] m - n
SSESEITTETTE So S
0x3F =[00111111+ 3 F +
0xC2 =1 1000010] c 2
100000001 101

v Addition of a bit without carry in: The circuit that implements this operation is called Half Adder (HA).

X + 0 +
y 0
carryout €— c s —>» sum 00

0 + 1+ 1+
1 0 1
01 01 10

~ Boolean Algebra is a very powerful tool for the implementation of digital circuits. Note how the 1-bit addition operation

‘x +y’ was mapped into Boolean equations for c and s. c=

x.y, s =x®y, where x, y, ¢, s are Boolean variables.

x Ay
: | >—= s
Y 7 HA
] c
Bl
v Addition of a bit with carry in: The circuit that performs this operation is called Full Adder (FA).
Ci
x + . \ .
carry out y sum X — S i X— —S _ X — S
Y — FA ! HA = Y FA
L Co S C —] — Co : Y — — C 0— — Co
n-bit Addition (of two operands): YT ITRR
The figure on the right shows a 5-bit addition. To implement a circuit 58858 Cout Cin
with the truth table method, we would need 11 inputs and 6 outputs (not 15: 0 1 1 1 1 + XgX3XpX1X0 +
practical!). A better method is to use a cascade of Full Adders. 100 01010 Y4Y3Y2Y1Yo
For an n-bit addition, the circuit looks like: 25: 11001 5483828150
Xn-1 Yn-1 X2 Y2 X1 Y1 X0 Yo
..,
Foi¥a2e - X1Xo T coy (Cp Cn1 C3 c2 C1 Co; Cin
Yn-1¥n-2- - - Y1Yo0 | FA FA [« FA € FA |
1 1
¥ Sn-1Sn-2- - -S1S0 """"i' """""""""" i« """""" i‘"""""'i """"
Sn-1 S2 S1 So
Full Adder Desi N -z - .=
er Design ci\ 0 01 11 10 S; = X3¥iCi t X3¥iCy T X3YiCi t+ X3ViCy
AP ACE oo -
——— = s; = (x3®y;)c; + (x3®y;)cy
ojojo 0 O 1 0 0
ojoj1] o 1 s; = x;@y;Dcy
oj1}]o0 0 1
XV
oj1;1y 1 o0 ciléo 01 11 10
110 0 0 1 0 0 0 1 0
jopyp r 0 Ciyn = XiVi T XG5 + ViCy
1]1]0 1 0 o [1 . .]
111]1 1 1

13

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design Fall 2024

ARITHMETIC OVERFLOW: '\ cout=1

= In an n-bit addition operation, the operands and the result are represented cout=0 2381 * i OVERFLOW!!! iéﬁé *
with the same number of bits. Overflow occurs when the result requires more —_— —
than n bits. For unsigned numbers, this is equivalent to the result being 1110 ' 10001

outside the n-bit range [0,2" — 1], i.e., overflow occurs when the sum is greater than 2™ — 1.
v Example: for n = 4 bits, the range is 0 to 15. Overflow occurs when the sum is greater than 15.
= In unsigned binary addition, a carry out of 1 means overflow. Thus, an overflow flag (or bit) can be

specified as: overflow = ¢, = Coye- 01011 +
= To ‘avoid’ overflow in addition operation, a common technique is to sign-extend (this is zero-extension 00110
for unsigned numbers) the two summands. For example, if the two summands are 4-bits wide, then —
we add one more bit. So, we use 5 bits to represent the operands and the result. t/: 10001
cout=

= In general, if the two summands are n-bits wide, the result will have at most n + 1 bits (2" — 1 + 2" — 1 = 2" — 2).

Xn-1 Yn-1 X, Y, X, v

B T . A o
rc;n FA & <C73 FA C2 FA Cl

oetow=ce e o e

UNSIGNED NUMBERS - SUBTRACTION

= In the example, we subtract two 8-bit numbers using the
binary and hexadecimal (short-hand notation) o
representations. A subtraction of two digits (binary or o
hexadecimal) generates a borrow when the difference is 0x3A =
negative. So, we borrow 1 from the next digit so that the
difference is positive. Recall that a borrow in a subtraction Ox2F =
of two digits is an extra 1 that we need to subtract. Also,
note that bg is the borrow in of the summation. This is 0x0B
usually zero.

= The last borrow (bg when n=8) is the borrow out of the Y
subtraction. If it is zero, it means that the difference is o 0 000
positive and can be represented with 8 bits. Ifitisone, it Ox3A = 0 0 1 1
means that the difference is negative, and we needto (0x75 = 0 1 1 1
borrow 1 from the next digit. In the example, we subtract
two 8-bit numbers, the result we have borrows 1 fromthe (oxc5 = 1 1 0 0 0 1 0 1 C 5
next digit.

=0
=1

o
L, N
0 o]
0
1

b
o o b,=0
© © be=0
P - by=0
o b4=1
= by=1
) b2=1
|

00001011 0B

O O O 1 O 1 O
1 L L 1 | 1 | |

| I
O N MmN

o o9
0
1

=1
1=0

< wb
o by=0
|

|
o

b,=1

o
1 1 0 -
0 01

= We can build an n-bit subtractor for unsigned numbers using Full Subtractor circuits. Subtraction for unsigned numbers
only makes sense if the result is positive (or when doing multi-precision subtraction). In practice, subtraction is better
performed in the 2’s complement representation (for signed numbers).

b b Xp-1Yn-1 X2 Yo X1 Y1 X0 Yo
T e e e e L
l En-1¥n-z- - - X1Xo T P, Efbn) by : bs b, P ¢ bo! Pin
Yn-1¥Yn-2++-Y1Yo FS FS < FS < FS
e oy o
dn4 d, d, do

. XY —_ —_—— _—
Full Subtractor Design b,\ 00 01 11 10 d, = x,y.b, + x,y.b, + x,y;b, + x,y.b

i

x;|yi|b; [bsyy dy 00 |1 0 |1 _

- 3; : 0+1 : d, = (x,®y,)b, + (x,®y,)b,
ofofl1| 1 1 1 0 \3 0 | 4, = x.@y.@b,

1318 11 Xi¥i

Of1p1] 1 0 pN'06o o1 11 10

100 0 1 ol o T) .

1lol1]| o o b, = Ty, + b, + y.b,

o b 11 {1 1] o

111 1 1 SN ED RS

14 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

SIGNED INTEGER NUMBERS

= For an n-bit number b,_,b,_, ...b;b,, there exist three common signed representations: sign-and-magnitude, 1's
complement, and 2's complement. In these three representations, the MSB always tells us whether the number is positive
(MSB=0) or negative (MSB=1). These representations allow us to represent both positive and negative numbers.

SIGN-AND-MAGNITUDE (SM):

= Here, the sign and the magnitude (value) are represented separately. The MSB only represents the sign and the remaining
n — 1 bits the magnitude.

= Example (n=4): 0110 = +6 1110 = -6

1's COMPLEMENT (1C):
= Here, if the MSB=0, the number is positive and the remaining n — 1 bits represent the magnitude. If the MSB=1, the number
is negative and the remaining n — 1 bits do not represent the magnitude. To invert the sign of a number in 1's complement
representation, we apply the 1's complement operation to the number, which consists of inverting all the bits.
v Let B=b,_;..bib, be a number represented in 1's complement. Let K = k,_; ... k1 k, represent - B. We get K by
applying the 1’'s complement operation to B. K is also called the 1's complement of B (and viceversa).
v Definition: The 1's complement of B is defined as K = (2" — 1) — B, n = # of bits (including sign bit), where K =
Yntk;2t and B = ¥4 b; 2% Note that K and B are treated as unsigned numbers in this formula. And (2" — 1) is the
largest n-bit unsigned number. We can then show that the 1's complement operation amounts to inverting all the bits:

n-1 n-1 n-1
Zki2i= (2"—1)—Zbi2i—>2(ki+bi)2"=2"—1—>ki+bi=1,Vi:>ki=l7l
i=0 i=0 i=0

Example: Given B = 01001, = 9 in 1's complement, get the 1's complement representation of -9 using the formula:
-K=02"-1)-B=(25-1)—-9=22=10110,.

Recall that the formula treats K and B as unsigned integers. So, K = 22 in unsigned representation, and K = -9 in 1's
complement representation.

It is much simpler to just invert each bit!

= With n bits, we can represent 2" — 1 numbers from —2"! + 1 to 2"~ — 1. When using the 1's complement representation,
it is mandatory to specify how many bits we are using.

= Examples:

v’ +6=0110 — -6=1001, +5=0101 — -5=1010, +7=0111 — -7=1000.

v’ If -6=1001, we get +6 by applying the 1's complement operationto 1001 — +6 = 0110

v' Get the 1's complement representation of 8: This is a positive number, thus the MSB=0. The remaining n — 1 bits
represent the magnitude. The magnitude is represented with a minimum number of 4 bits as 8=1000,. Thus, using a
minimum number of 5 bits, the number 8 in 1's complement representation is 8=01000,.

v" What is the decimal value of 1100? We first apply the 1's complement operation to 1100, which results in 0011 (+3).
Thus 1100=-3.

v" What is the 1’s complement representation of -4? We know that +4=0100. To get -4, we apply the 1's complement
operation to 0100, which results in 1011. Thus 1011=-4.

2's COMPLEMENT (2C):
= Here, if the MSB=0, the remaining n — 1 bits represent the magnitude. If the MSB=1, the number is negative and the
remaining n — 1 bits do not represent the magnitude. To invert the sign of a number in 2's complement representation, we
apply the 2’s complement operation to the number, which consists on inverting all the bits and add 1.
v' LetB = b,_; ... b; by be @a number represented in 2s complement. Let K = k,,_, ... k1 k, represent —B. We get K by applying
the 2’s complement operation to B. K is also called the 2's complement of B (and viceversa).
v Definition: The 2's complement of B is defined as K = (2" — 1) — B + 1, n = # of bits (including sign bit), where K =
Y4 k2t and B = Y14 b;2%. Note that K and B are treated as unsigned numbers in this formula. We can see that we
can first get the term (2™ — 1) — B by inverting all the bits; then we add 1 to complete the equation.

Example: Given = 01001, = 9 in 2's complement, get the 2's complement representation of -9 using the formula:
SK=0Q"-1)-B+1=(25-1)—-9+41=23=10111,.

Recall that the formula treats K and B as unsigned integers. So, K = 23 in unsigned representation, and K = —9 in 2's
complement representation.

It is much simpler to just invert each bit (i.e., apply 1's complement operation) and then add 1!

= With n bits, we can represent 2" numbers from —2""1 to 2! — 1. When using the 2's complement representation, it is
mandatory to specify how many bits we are using.

15 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

= Graphical interpretation of four-bit 2's complement numbers:
If these 4-bit patterns represented unsigned integers, they would be numbers
from 0 to 15. As they represent 2's complement integers, then the numbers
range from -8 to 7.

= Examples:

v +6=0110 — -6=1010, +5=0101 - -5=1011, +7=0111 —» -
7=1001.

v If -6=1010, we get +6 by applying the 2's complement operationto 1010
— +6 = 0110

v" Represent 12 in 2's complement: This is a positive number, — MSB=0. The
remaining n — 1 bits represent the magnitude. We can get the magnitude
with @ minimum 4 bits: 12=1100,. Thus, using a minimum of 5 bits, the
number 12 in 2's complement representation is 12=01100,.

v" What is the decimal value of 1101? We first apply the 2's complement
operation (or take the 2's complement) to 1101, which results in 0011 (+3). Thus 1101=-3.

v" What is the 2’s complement representation of -4? We know that +4=0100. To get -4, we apply the 2's complement
operation to 0100, which results in 1100. Thus 1100=-4.

Getting the decimal value of a number in 2's complement representation:
= If the number B is positive, then MSB=0: b,,_; = 0.

n—1 n-2 n—-2

= If the number B is negative, b,,_; = 1 (MSB= 1) If we take the 2's complement of B, we get K (which is a positive number).
In 2's complement representation, K represents —B. Usmg K=2"— B (K and B are treated as unsigned numbers):

ZkZl—zn sz‘

= We want a to express -K in terms of bl, smce the |nteger value - K |s the actual integer value of B.
ZkZ‘—ZbZ‘—Z = b, 2" 1+Zb2‘ 2n = 2ni(p, 1—2)+Zb2l

B=—-K=2" 1(1—2)+Zb2’=—2" 1+Zb2L b

= Using (a) and (b), the formula for the decimal value of B (elther p05|t|ve or negatlve) is:

B=—b, ;2" + Z b2
i=0

= Examples:

10110, = —2* + 22 + 21 = —-10 11000, = —2* + 23 = -8
SUMMARY
= The following table summarizes the signed representations for a 4-bit number:
n=4: SIGNED REPRESENTATION
bsbabibo Sign-and-magnitude 1's complement 2's complement
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 0 -1
Range for n bits: | [-(2"t—1),2"1—1] | [-(@"t—1),2"1—1] | [-2" % 2n1—1]

16 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

= 1Cand 2C are representations of signed numbers. 1C and 2C represent both negative and positive numbers. Do not confuse
the 1C and 2C representations with the 1C and 2C operations.

= Note that the sign-and-magnitude and the 1’s complement representations have a redundant representation for zero. This
is not the case in 2's complement, which can represent an extra number.

= In 2C, the number -8 can be represented with 4 bits: -8=1000. To obtain +8, we apply the 2C operation to 1000, which
results in 1000. But 1000 cannot be a positive number. This means that we require 5 bits to represent +8=01000.

SIGN EXTENSION
= Unsigned Numbers: Here, if we want to use more bits, we just append zeros to the left.
Example: 12 = 1100, with 4 bits. If we want to use 6 bits, then 12 = 001100,.

= Signed Numbers:
v' Sign-and-magnitude: The MSB only represents the sign. If we want to use more bits, we append zeros to the left.
The leftmost bit is always the sign.
Example: -12 = 11100, with 5 bits. If we want to use 7 bits, then -12 = 1001100,.

v 2's complement (also applies to 1's complement): In many circumstances, we might want to represent humbers in 2's
complement with a fixed number of bits. For example, the following two numbers require a minimum of 5 bits:
10111, = =2 +22+ 2 +20=—9 01111, =23 +22+ 21 +2%=+15

What if we wanted to use 8 bits to represent them? In 2's complement, we need to sign-extend: If the number is positive,
we append zeros to the left. If the number is negative, we attach ones to the left. In the example, note how we added
three bits to the left in each case:

11110111, = —2*+22+214+20= -9 00001111, =23+ 22 +21 4+ 20 = +15

Demonstration of sign-extension in 2's complement:
* To increase the number of bits for representing a number, we append the MSB to the left as many times as needed:
by-1by—2 o =bp—1 w. by1bp_1bn_z ... bg
Examples: 00101, = 0000101, =22 +2°=5
10101, = 1110101, = —2% + 22 + 20 = —26 + 25+ 244+ 22 + 20 = 11

We can think of the sign-extended number as an m-bit number, where m > n:
bTL—l ---bn—lbn—lbn—z ...bo = bm_1 v bnbn_lbn_z ...bo, Whel‘e: bi = bn—l'i =nn+ 1, e, m—= 1

= We need to demonstrate that b,,_,b,,_, ... by represents the same decimal number as b,,_; ... by_1bp_1by_5 ... by, i.€., that the
sign-extension is correct for any m > n.
We need that: bm_1 ---bnbn—lbn—z ...bo = bn_1 e bn—lbn—lbn—z ...bo = bn_lbn_z ...bo

Using the formula for 2's complement numbers

—2m-1p,. 1+Zzlb =-2""1h,_ 1+22b
n-—2 m—2

—2m-1p .+ Z 2ib; +ZZ‘b =—n1p 1+ZZ’b ——2m1p .+ Z 2ip; = —2n1p,

i=n-1 i=n-1
m-2
om-1p 4 b,, Z 2i = _pn-1p
. i=n-1
; rk — i+l _ol+1
Recall: Z = 1 221— =2t 2k
eca rt 1 2 r#1 - 1-2

=k
Then:

_Zm—lbn_1 + bn—l(zm_l _ 2n—1) = —_Qn- 1bn 1
—2m-1p 4 2m1p, , —2"1p, = 2" 1p, . —2n"1p, = —2n1p

ADDITION AND SUBTRACTION (SIGNED = 2's COMPLEMENT NUMBERS)

= We will use the 2's complement representation for signed numbers.

= The advantage of the 2's complement representation is that the summation can be carried out using the same circuitry as
that of the unsigned summation. Here the operands can either be positive or negative.

ADDITION:
= We show addition examples of 4-bit signed numbers. Note that the carry out bit DOES NOT necessarily indicate overflow.
In some cases, the carry out must be ignored, otherwise the result is incorrect.

17 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design

+5 = 0101 + -5 = 1011 +
+2 0010 +2 0010
+7 = 0111 -3 = 1101
cout=0 cout=0

Fall 2024
+5 = 0101 + -5 = 1011 +
-2 1110 -2 = 1110
+3 =X0011 -7 =X1001
A A
cout=1 cout=1

Now, we show addition examples of two 8-bit signed numbers. The carry out cg is not enough to determine overflow. Here,

if cg#cy there is overflow. If cg=c7, no overflow and we can ignore cs. Thus, the overflow bit is equal to cs XOR c;.

Overflow: For 8-bit operations, this occurs when the summation falls outside the 2's complement range for 8 bits:

[-27,27 — 1]. If there is no overflow, the carry out bit must not be part of the result.

O 1 O
L1 T [

| | |
0 I~ O In
(8]

—
|

—

o O o
Loonon
N < O

+92
+78

I

| |
ST ITFTSGS
01 011100
01 001110
= 10101010

+170 0

overflow = cg®c,=1 -> overflow!

+92
-78

+14

overflow

+14 e [-

cg®c,=0 -> no overflow

27, 27-1] -> no overflow

In general, for an n-bit number, overflow occurs when the summation falls outside the range [-27"1, 271 —

O -H0O0O0O0O0Oo

T TR TR TR IR TR TR T

UDO U'\ ULD Um L;r Um L‘)\‘ (JH UO
-92=10100100 +

-78 =1 0110010

-170 =1 01010110

overflow = cg®c,=1 -> overflow!

-170 ¢ [-27, 27-1] -> overflow!

OCO0OO0OO0O - —HO0OO0O

TR TR R T TR TI TIR TR TI T

Uw U'\ (.)kD Um J Um ‘-r’\l L)H UO
-92=10100100+

+78 = 01001110

-14 =X 11110010
overflow = cg®c,=0 -> no overflow
-14 e [-27, 27-1] -> no overflow

1]. The overflow

bit can quickly be computed as overflow = ¢,®c,_;. AlSO, cour = Cp-

To avoid overflow, a common technique is to sign-extend the

OO d-H OO — 40000
two summands. For example, for two 4-bits summands, we oo nig oo nag
add an extra bit; so, we use 5 bits to represent our numbers. g © e oee

= In general, if the two summands are n-bits wide, the result t7=00111+ -7=11001H+
will have at most n + 1 bits. t2=00010 -2=11110

= Recall that if there is no overflow in a summation result, the
carry out bit must not be part of the result. +9 =01001 -9=10111
Digital Circuit - Addition
= The figure depicts an n-bit adder for 2’s complement numbers:
iﬂ 1 Ein 1 i liz X Eil io 10
< Cna Cs P C1 Co! Cin
om<~—|— FA |€ €< FA € FA FA «——
overflow Gf] ; !
v v v v
Sh-1 S» Sy So

SUBTRACTION

= Note that A—B=A+2C(B). To subtract two numbers represented in 2's 7-3=74+(-3):
complement arithmetic, we first apply the 2's complement operation to B (the +3-0011 —» -3=1101
subtrahend), and then add the numbers. So, in 2's complement arithmetic, ‘- - o
subtraction is actually an addition of two numbers. Sl bl

cout = 1 +7 0111+

= The digital circuit for 2's complement subtraction is based on the adder. We account overflow = 0 3 1101
for the 2's complement operation for the subtrahend by inverting every bit in the T S

subtrahend and by making the ci, bit equal to 1. Here, we give up the borrow in.

18

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

Xp-1 Yn-1 X2 Yo X1 Y1 X0 Yo

C

1 Cp .
out <€ FA <
overflow (|
\

Adder/Subtractor Unit for 2's complement numbers:
= We can combine the adder and subtractor in a single circuit if we are willing to give up the input c;,.

X
add/sub
add =0
sub=1

n

e
Cout <«
overflow “f |
\

add/subl y; £
0 0 0 add/sub___, i
0 1 1 v _>> >—
1 0 1 *
1 1 0

= If there is no carry in (or borrow in): The largest value (in magnitude) of addition of two n-bits operators is —2"1 +
(=2""1) = —2". In the case of subtraction, the largest value (in magnitude) is —2"1—-(2"1-1)=-2"+1, or
(2"t —1) — (—2m"1) = 2™ — 1. Thus, the addition/subtraction of two n-bit operators needs at most n + 1 bits. ¢, = cyy: IS
used in multi-precision addition/subtraction.

SUMMARY
= Addition/Subtraction of two n-bit numbers (no carry in or borrow in):
UNSIGNED SIGNED (2C)
Overflow bit Cn Cn®Cp_q
Overflow occurs when: A+ Bg[0,2"—1], ¢, =1 (A+B)g[-2712" 1 —1], ¢,®Pcpq=1
Result range: [0,27+1 — 2] A+Be[-2"2"—-2], A—Be[-2"+1,2"—1]
Result requires at most: n + 1 bits

", = oyt IS USed in multi-precision addition/subtraction for both signed and unsigned numbers.

19 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

MULTIPLICATION OF INTEGER NUMBERS

MULTIPLICATION OF UNSIGNED NUMBERS
= Simple operation: first, generate the products, then add up all the rows column by column (consider the carries).

as an ai ap X

1011 x 1101 x
11 x 13 x
Ps b2 b1 bo 13 . 1101 15 ‘ 1111
asby asbg aibg agbg - = 4+ 0 OO0 O - ooo @00
1011 T == 1101
a3b1 agbl albl aobl 143 0000 195 1101
a3b2 a2b2 a1b2 a0b2 101 1 1101
asbs azbs aibs agbs 1011 1101
P Pe Ps P4 b3 b2 b1 Po 10001111 11000011
= For two 4-bit unsigned numbers A and 3 3
B, the multiplication A x B is givenby: A x B = Z a;2/ Z b;2J
j=0 j=0
3 3 3 3
= This can be rewritten as: A X B = by2° Zajzf + b, 21 Zajzf + b, 22 Zajzj + b323 Zajzj
=0 Jj=0 j=0 Jj=0

= Note that if two operators are n-bits wide, the result (product) needs at most 2n bits. This is because the maximum possible
value of the product is (2" — 1) x (2" — 1) = 22" — 21 + 1, which requires 2n bits to be represented.

COMBINATIONAL MULTIPLIER FOR UNSIGNED NUMBERS

= The partial product computations are implemented by AND gates.
= A straightforward combinational implementation for the multiplication can be achieved by adding two partial products (rows)
at each stage. This circuit, also called an Array Multiplier, is depicted in the figure:

0000 <
0000

m 000000 "
__/’_m
0000 0000000 +

XXXy > 0000
00000000 00000000

a; 0 as as ag

PU | | bO
b;
i b
PU PU PU PU — 0
Cout FA Cin At IRt S
b,
PU PU P_I_J_____ /PU [<— O
} b3
17 PU PU PU PU «— 0
1<} Pe Ps P4 Ps3 P2 Pa Po

= Though simple, this circuit has a large combinational delay from input to output. A signal must travel thru 8 Full Adders and
an AND gate (longest path delay). Note that every stage (row) propagates the carries to the left.

20 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design

Fall 2024

ARRAY MULTIPLIER (OTHER) FOR UNSIGNED NUMBERS

= An alternative implementation of the multiplication operation of two 4-bit unsigned numbers is depicted in the figure: at
every diagonal of the circuit, we add up all terms in a column of the multiplication.

= The propagation delay is reduced. A signal only needs to travel through 6 Full Adders an AND gate (longest path delay).
Note that every stage (row) does not propagate the carries to the left; instead, they are sent down to the next stage. Only
the last stage propagates carries to the left.

a(0)

a(l)

a(2)

a(3)

x cin y b3 b2 bl bO
¢ 4 ([| | [asbd [2zbg(@ibg [@obg
FULL asby |ayby| aiby|jaghb;
ADDER asb, |aby |aiby |agb,
i asby |aybs a;bg |agb;
s - D2 o N N J
cout Py Ps Ps Pa Ps Py P1 Po
b (3) b(2) b(1l) b (0)
L agbs B agb B agb,] agby |
i _G—o _2<:|—0 _G—o _G—o
i M3 My, Mo My
So3 So2 So1 Soo

lalb —T ialb J \
1 N v~ /1 N

el

21 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design

Fall 2024

MULTIPLICATION OF SIGNED NUMBERS

= A straightforward implementation consists of checking the sign of the multiplicand and multiplier. If one or both are negative,
we change the sign by applying the 2's complement operation. This way, we are left with unsigned multiplication.

of the unsigned multiplication is the final output.

101 xgh 011 x 010xgh010
010 010 110 010
000 000
011 010
000 000
000110 000100
$ $

111010

111100

As for the final output: if only one of the inputs was negative, then we modify the sign of the output. Otherwise, the result

lllx»Ole 011 x
110 010 010
000 000

001 011

000 000
000010 000110

Note: If one of the inputs is —2™~1, then the negative version is 2", which requires n + 1 bits. Here, we are allowed to

use only n bits; in other words, we do not have to change its sign.

This will not affect the final result since if we were to use n + 1 bits for 271, the MSB=0, which implies that i) the last row
if full of zeros, or ii) there is an extra ‘0’ to the MSB of every summand.

1 00 x 100 x 011x 011 x lOOx»lOOx
011 011 100 100 100 100
100 000 000
100 000 000
000 011 100
001100 001100 010000O0
¥ ¥
110100 110100

2n bits (in 2's complement representation)

Final output: It requires 2n bits. Note that it is only because of the multiplication of —2"~1 by —2"-1 that we require those

22

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design

Fall 2024

BINARY CODES
= We know that with n bits, we can represent 2" numbers, from 0 to 2™ — 1. This is a commonly used range. However, with

'n’ bits, we can also represent 2™ numbers in any range.

= Moreover, with n bits we can represent 2" different symbols. For example, in 24-bit color, each color is represented by 24

bits, providing 224 distinct colors. Each color is said to have a binary code.

= N =5 symbols. With 2 bits, only 4 symbols can be represented. With 3 bits, 8 symbols can be represented. Thus, the number
of bits required is n = 3 = [log,5] = log,8. Note that 8 is the power of 2 closest to N=5 that is greater than or equal to 5.
= In general, if we have N symbols to represent, the number of bits required is given by [log, N]. For example:
v" Minimum number of bits to represent 70,000 colors: — Number of bits: [log, 70000] = 17 bits.
v Minimum number of bits to represent numbers between 15,000 and 19,096: — There are 19,096-15,000+1=4097. Then,
number of bits: [log, 4097] = 13 bits.

7-bit US-ASCII character-encoding scheme: Each character is represented by 7 bits. Thus, the number of characters that
can be represented is given by 27 = 128. Each character is said to have a binary code.

Hex Dec Char Hex Dec Char |Hex Dec Char |Hex Dec Char
0x00 0 NULL null 0x20 32 Space|0x40 64 @ |J0x60 96 ~
0x01 1 sSOH Start of heading 0x21 33 ! 0x41 65 A |0x61 97 a
0x02 2 STX Start of text 0x22 34 2 0x42 66 B |0x62 98 b
0x03 3 ETX End of text 0x23 35 # 0x43 67 C |0x63 99 ¢
0x04 4 EOT End of transmission 0x24 36 $ 0x44 68 D |0x64 100 d
0x05 5 ENQ Enquiry 0x25 37 % 0x45 69 E |0x65 101 e
0x06 6 ACK Acknowledge 0x26 38 & 0x46 70 F |ox66 102 f
0x07 7 BELL Bell 0x27 39 ' 0x47 71 G |0x67 103 g
0x08 8 BS Backspace 0x28 40 (0x48 72 H |0x68 104 h
0x09 9 TAB Horizontal tab 0x29 41) 0x49 73 I |0x69 105 i
0x0A 10 LF New line 0x2A 42 * 0x4A 74 J |O0x6A 106
0x0B 11 VT Vertical tab 0x2B 43 + 0x4B 75 K |0x6B 107 k
0x0C 12 FF Form Feed 0x2C 44 ¢ 0x4C 76 L |0x6C 108 1
0x0D 13 CR Carriage return 0x2D 45 - 0x4D 77 M |0x6D 109 m
0x0E 14 SO sShift out 0x2E 46 = 0x4E 78 N |O0x6E 110 n
0x0F 15 SI Shift in 0x2F 47 / 0x4F 79 O |O0x6F 111 o
0x10 16 DLE Data link escape 0x30 48 0 0x50 80 P |0x70 112 P
0x11 17 DC1 Device control 1 0x31 49 1 0x51 81 Q |0x71 113 g
0x12 18 DC2 Device control 2 0x32 50 2 0x52 82 R |0x72 114 r
0x13 19 DC3 Device control 3 0x33 51 3 0x53 83 S |0x73 115 s
0x14 20 DC4 Device control 4 0x34 52 4 0x54 84 T |0x74 116 t
0x15 21 NAK Negative ack 0x35 53 5 0x55 85 U |0x75 117 u
0x16 22 SYN Synchronous idle 0x36 54 6 0x56 86 VvV |0x76 118 v
0x17 23 ETB End transmission block | 0x37 55 7 0x57 87 W |0x77 119 w
0x18 24 CAN Cancel 0x38 56 8 0x58 88 X |0x78 120 =x
0x19 25 EM End of medium 0x39 57 9 0x59 89 Y |0x79 121 vy
0x1A 26 SUB Substitute 0x3A 58 - 0x5A 90 2z |0x7A 122 =z
0x1B 27 FSC Escape 0x3B 59 3 0x5B 91 [|0x7B 123 {
0x1C 28 FS File separator 0x3C 60 < |ox5Cc 92 \ |[ox7Cc 124 |
0x1D 29 GS Group separator 0x3D 61 = 0x5D 93] |0x7D 125 }
0x1E 30 RS Record separator 0x3E 62 > 0x5E 94 ~ |0xX7E 126 ~
0x1lF 31 US Unit separator 0x3F 63 ? 0x5F 95 |0xX7F 127 DEL
Unicode: This code can represent more than 110,000 characters and attempts to cover all world’s scripts. A common character

encoding is UTF-16, which uses 2 pair of 16-bit units: For most purposes, a 16 bit unit suffices (2'¢ = 65536 characters):

3 (Greek theta symbol) = 03D1 €2 (Greek capital letter Omega): 0329

XK (Cyrillic capital letter zhe): 0416

23

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design Fall 2024
BCD Co_de: _ _ o)] BCD decimal #
= In this coding scheme, decimal numbers are represented in binary form by independently encoding
each decimal digit in binary form. Each digit requires 4 bits. Note that only values from 0 are 9 0 0000
are represented here. 1 0001
= This is a very useful code for input devices (e.g.: keypad). But it is not a coding scheme suitable 2 0010
for arithmetic operations. Also, notice that the binary numbers 1011,(10) to 1111,(15) are not 3 0011
used. Only 10 out of 16 values are used to encode each decimal digit. 4 0100
= Examples: 5 0101
v" Decimal number 47: This decimal number can be represented as a binary number: 101111,. 6 0110
In BCD format, this would be: 0100 0111, 7 0111
v" Decimal number 58: This decimal number can be represented as a binary number: 111010,. 8 1000
In BCD format, the binary representation would be: 01011000, 9 1001

v" The BCD code is not the same as the binary number!

= There exist many other binary codes (e.g., reflective gray code, 6-3-1-1 code, 2-out-of-5 code) to represent decimal
numbers. Usually, each of them is tailored to a specific application.

REFLECTIVE GRAY CODE:

Decimal
919 Number b,b;b, 929190 93929190 b, by, ... by Dby
olo 0 000 o(o0o 0 000O00O0
Oll_‘ 1 001 0|0 1 0001
1 2 010 0|11 o011
lm 2 011 | olial go1s Jp-1 Fnz -+ 91 o
4 100 1110 00110
5 101 1111 00111
6 110 101 o101 gn—lgn—2"'g1 gO
7 111 1(00 0100
11 0 O]
11101 b, b, ... b, Dby
1/1 11
1110
11010
11011
1001
1000

= Application: Measuring angular position with 4-bit RGC. 4 beams are emitted along an axis. When a light beam passes
(transparent spots, represented as whites), we get a logical 1, 0 otherwise. The RGC encoding makes that between areas
only one bit changes, thereby reducing the possibility of an incorrect reading (especially when the beam between adjacent
areas). For example: from 0001 to 0011 only one bit flips. If we used 0001 to 0010, two bits would flip: that would be
prone to more errors, especially when the beams are close to the line where the two areas meet.

Angle 93929190

0 -22.510000

EMITTER 22.5 - 4500 0 1
45 - 67.5/0 01 1

67.5 -90j 0010

Y ¥ ¥ ¥ 90 - 112.5/ 0110
[:- 112.5 - 13510 1 11

135 - 157.50 01 0 1

157.5 - 18040 1 0 O

¥ ¥ 180 - 202.5/1 100
202.5 - 22541101

RECEPTOR 225 - 247.501 111
iiii 247.5 - 270|111 0
Q @ a Q 270 - 292.5§1 010
o N w 292.5 - 3151 011
315 - 337.5)1 001

337.5 - 3601 00O

24 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

INTRODUCTION TO FIXED-POINT ARITHMETIC
= We have been representing positive integer numbers. But what if we wanted to represent numbers with fractional parts?
= Fixed-point arithmetic: Binary representation of positive decimal numbers with fractional parts.

Given the following binary number:
(bp-1bp—z -..by1bg.b_1b_3 ...b_g),
Formula to convert it to decimal:

n-1
D= Z bix2i=b, X2" V4 b, 3 x2" 24 b by x 2V + hgx 20+ b_y x27 1+ b 3 x272+ b x 27K
i=—k

Conversion from binary to hexadecimal (or octal): (unsigned numbers)
Binary: 1101.11, === ‘091, ‘l(l)l,-‘ll'O,

Voo

1

octal:

Binary: 10101.10101, == 0001 0101.1010 1000
hexadecimal: i i . i i

= Example: (unsigned number)
1011101, =1x 234+ 0x22 +1x2'+1x2°+1x21+0x272+1x273=11.625

= Example: Now, what if we have a decimal number with fractional part? What we do is we divide the integer part and the
fractional part. We obtain the binary representation of the integer part using what we know. As for the fractional part, what
we do is successive multiplications by 2, the resulting integer parts resulting is the result.

Number in Number in Number in Number in
base 10 ‘ base 2 ’ ‘ base 10 ’ base 2
Y Y
0.625 —) 2227, 0.7 —) 2227,
_MSB _MSB
0.625x2 = 1.25 =|(1)+ 0.25 0.7x2 = 1.4 = |(1)+ 0.4
0.25x2 = 0.5 =10+ 0.5 0.4x2 = 0.8 =10 + 0.8

J//’”“‘____,/// ¢//”—_‘\\\‘

0.8x2 =1.6 =]1 + 0.6

0.5x2 =1 =11+0 _l
4 K_/
0.101,

stop here! 0.6x2 =1.2 =|1 + 0.2

0.2x2 = 0.4 =0+ 0.4

j//”——‘____,///

0.4x2 = 0.8 =/|0 + 0.8

0.10110 0110
= Example (signed number): Convert -379.21875 to the 2’s complement representation.
First, we get the binary representation of +379.21875, and then apply the 2’s complement operation to that result.
v 379 =1011110115. In 2’s complement: 379 = 0101111011,, 0.21875=0.001115.
v" Then: 379.21875 = 0101111011.00111,. This is the 2's complement representation of 379.21875.
v' Finally, we get -379.2185 by getting the 2’s complement of the previous result: -379.21875 = 1010000100.11001,=
0xE84.C8 (to convert to hexadecimal, we append zeros to the LSB and sign-extend the MSB)

25 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-2700: Digital Logic Design

Fall 2024

= Example (unsigned number): Convert 113.6875 to the binary representation (unsigned integer).

Number in

Number in

base 10 base 2
113 [2222,
Remainder
56 A -
1
2
2 0
2 0
0 1110001,
2 .
2 1
1
2
1
2

stop here!

Number in
base 10

0.6875

0.6875x2 =1

—

.375

K_\

0.375x2 = 0.

Number in
base 2

2227,

MSB
= (D + 0.375

=] 0+ 0.75

KX—/

= 1 + 0.5

= 140

0.1011,

stop here!

113.6875 = 1110001.1011, = 0x71.B

PRACTICE EXERCISES

= Determine the radix r such that:
v\ 645, =327,
v’ 150, + 256, = 426,
v’ 45, %6, = 450,

= Represent the unsigned decimal number 1237 in the following formats. Determine the number of bits required in each case.

v' BCD
v Binary
v 7-bit ASCII

= Complete the following table:

REPRESENTATION

Decimal

Sign-and-magnitude

1's complement

2's complement

010011

11000

10000

-15

111

= Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal.

-93.65625, -256.6875,

31.6875,

-138.625.

Instructor: Daniel Llamocca

	Unsigned Integer Numbers
	Decimal Number System
	Binary Number System
	Conversion of Decimal (Integer Positive) to Binary Numbers
	Hexadecimal Number System
	Octal Numbers
	Applications of Binary and Hexadecimal Representations
	Unsigned Numbers - Addition
	Unsigned Numbers - Subtraction

	Signed Integer Numbers
	Sign-and-Magnitude (SM):
	1’s Complement (1C):
	2’s Complement (2C):
	Addition and Subtraction (Signed (2’s Complement numbers)

	Multiplication of Integer Numbers
	Multiplication of Unsigned Numbers
	Combinational Multiplier for Unsigned Numbers
	Array Multiplier (other) for Unsigned Numbers
	Multiplication of Signed Numbers

	Binary Codes
	Introduction to Fixed-point Arithmetic
	Practice Exercises

